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Abstract

Biodynamic responses to whole body vibrations are usually characterized in terms of transfer functions, such as

impedance or apparent mass. Data measurements from subjects are averaged and analyzed with respect to certain

attributes (anthropometrics, posture, excitation intensity, etc.). Averaging involves the risk of identifying unnatural

vibration characteristics.

The use of a modal description as an alternative method is presented and its contribution to biodynamic modelling is

discussed. Modal description is not limited to just one biodynamic function: The method holds for all transfer functions.

This is shown in terms of the apparent mass and the seat-to-head transfer function.

The advantages of modal description are illustrated using apparent mass data of six male individuals of the same mass

percentile. From experimental data, modal parameters such as natural frequencies, damping ratios and modal masses are

identified which can easily be used to set up a mathematical model. Following the phenomenological approach, this model

will provide the global vibration behavior relating to the input data.

The modal description could be used for the development of hardware vibration dummies. With respect to software

models such as finite element models, the validation process for these models can be supported by the modal approach.

Modal parameters of computational models and of the experimental data can establish a basis for comparison.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

As a result of increasing mobility, humans face a multiplicity of vibrations in vehicles or at the workplace.
One can divide these oscillations into two categories:
�
 they may reduce the comfort of the occupants, or

�
 they may lead to serious physical injuries.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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reasons:

Vibrational comfort and damage due to oscillations have become an important issue for two different
�
 since diseases of the lumbar spine/cervical spine resulting from exposure to vibration at the workplace were
acknowledged as occupational disease within the last decade, an employee may sue the employer for
damages [1,2].

�
 with rising expectations of customers, and unification of car concepts, comfort is one key area in which car

manufacturers can achieve differentiation with respect to competitors. Numerous approaches have been
proposed to objectify comfort.
The two latter aspects have led to a growing demand for research and an interest in a systematic analysis of
the human body. On the one hand, invasive experiments on humans are limited by ethic concerns. On the
other hand, results from questionnaires vary with the subjectivity of test persons (TP) and show a lack of
reproducibility.

Thus, there are good reasons to develop biodynamic models of man. Simulation results of these models will
help to understand the behavior of the human body and to estimate the consequences of exposure to vibration.

In order to draw a conclusion it is essential that the models provide reliable results. Therefore, all
biodynamic models—phenomenological and anatomical—need to be validated carefully. This study presents a
method which can improve the quality of models and make them comparable. An identification technique
based on modal decomposition is proposed, which extracts the significant dynamic properties of the human
body from measured response functions.

Several phenomenological models have been proposed, based on experimental biodynamic data. Fig. 1
shows a selection of different models designed to represent a sitting human subject exposed to vertical
vibration.

A variety of structures with one or multiple degrees of freedom were presented in Refs. [3–8] and defined in
the standard ISO 5982 [9]. Models for horizontal vibration can be derived in an analog manner [10].

Wei and Griffin [8] investigated a two dof parallel model which has the same structure as the model of Suggs
et al. [4]. The models 1b and 2b proposed by Wei and Griffin [8] fulfill the requirements of a modal model in
terms of the structure which will be described in detail in Section 2.2. In Ref. [8], modal parameters such as
modal mass, modal stiffness and modal damping coefficients are identified and averaged within a group (i.e.,
men, women and children), but the idea of the modal approach is not mentioned. However, the authors
conclude that both modal models (1b, 2b) yielded better results for representing the apparent masses of the
input data than the models without a rigid support (1a, 2a).
Suggs et al., 1969
Wei & Griffin (2b), 1998

ISO 5982, 2001Knoblauch, 1992
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Fig. 1. Selection of phenomenological models.
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2. Method

2.1. Characteristics of whole-body vibrations

The most common function with respect to whole body vibrations is the apparent mass, defined as

MðOÞ ¼
F ðOÞ
€QðOÞ

with O ¼ 2pf . (1)

This apparent mass is the ratio, in the frequency domain, of the complex force to the complex vibration
acceleration, measured at the same point and in the same direction as the force [9]. In this paper, we
concentrate on the forces and accelerations of a seated human under vertical vibration at the man-seat
interface in the z-direction, illustrated in Fig. 2.

Some authors have reported biodynamic response functions in terms of the driving-point mechanical
impedance, which has some advantages for the visual representation of higher frequencies. The relationship
between the impedance and apparent mass is determined by the fixed factor jO:

IðOÞ ¼ jOMðOÞ. (2)

If the vibration behavior of the human body itself is to be analyzed, the biodynamic response function has
to be measured on a rigid seat. Fig. 2 shows the experimental setup.

The vibration response depends on a variety of parameters; the following quantities have the most influence:
�
 anthropometrics (body mass, mass distribution, body height, etc.),

�
 posture,

�
 intensity of excitation,

�
 direction of excitation,

�
 gender.
Descriptions of vibration behavior, commonly classify TP and group them in percentiles, according to
weight or height.

Usually, a mean function is calculated, although averaging involves the risk of equalizing certain
characteristics, i.e. peaks are lost or the frequency range of peaks is shifted.

These effects can be observed in the standard ISO 5982 [9], which defines a mean apparent mass and
driving-point mechanical impedance, respectively. The modulus of the impedance in Fig. 3 is very flat in the
frequency range between 5 and 14Hz. The upper and lower limits indicate that the original data contained
more variability in impedance curves, because the mean curve was computed from measurements of 101
subjects, with a body mass ranging from 49 to 93 kg. The excitation intensities varied between 0.5 and
3.0m s�2 rms.
Fig. 2. Measurements on the test person, experimental setup.
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2.2. Modal description of biodynamic response functions

The use of modal identification techniques can help to overcome problems which arise from data averaging.
The human body can be represented as model which contains a base mass m0

m and n sets of single-degree-of-
freedom (sdof) structures consisting of a mass mr

m, a spring kr
m and a damper cr

m, where the superscript m

refers to the modal model. This approach implies a very simple requirement: The given system must be able to
be mapped to a linear model. Linearity of the system itself is not a requisite. To cover nonlinear effects of the
human body, it is necessary to develop vibration intensity-dependent models and to identify different sets of
modal parameters.

The unique feature of a modal model is its structure. Thus, no effort is needed to find the ‘‘best model
structure’’ of a system (arrangement of several degrees of freedom in series and/or in parallel). By definition,
the modal approach includes all dynamic properties in a certain frequency range. It is essential to decide how
many and which modes are taken into account. The number of modes equals the sdof sets.

The apparent mass of the model shown in Fig. 4 can be calculated as

MðOÞ ¼ mm
0 þ

Xn

r¼1

mm
r V rðOÞ, (3)

where Vr(O) denotes the frequency response function of each base-excited sdof system:

V rðOÞ ¼
1þ j 2DrðO=orÞ

1� ðO=orÞ
2
þ j 2DrðO=orÞ

. (4)

Eq. (4) contains the parameters which represent all the dynamic components of each sdof structure:
�
 natural frequencies f r ¼ or=2p (Hz),ffiffiffiffiffiffiffiffiffiffiffiffiffip

�
 damping ratios Dr ¼

1
2
cm

r = mm
r km

r (dimensionless).
The natural frequencies and the damping ratios in Eq. (4) can be replaced by terms of the modal stiffness
and the modal damping coefficients.
mr
m

cr
m kr

m

m0
m

1 r n

Fig. 4. Biodynamic model of the seated human body—modal approach.
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Each frequency response function is multiplied by the corresponding modal mass mr
m (kg). Finally, the base

mass m0
m (kg) is added to the apparent mass.

From the apparent mass curves, limits both at the lower and at the upper frequency range can easily be
identified:

MðO! 0Þ ¼ mm
0 þ

X
mm

r , (5)

MðO!1Þ ¼ mm
0 . (6)

The disadvantage of the common averaging method is evident in Fig. 5, where the apparent mass curves of
two sdof models with rigid support are plotted. The parameters are chosen so that they reveal the differences
between averaging and modal averaging. Both models have the same masses (m0 ¼ 10 kg and m1 ¼ 25 kg), but
the natural frequency and the damping ratio vary slightly between model A (f1,A ¼ 5Hz,D1,A ¼ 0.1) and
model B (f1,A ¼ 6.5Hz,D1,B ¼ 0.12). The mean apparent mass curve of models A and B exhibits two clear
peaks. If one was to identify the model parameters of the averaged function, one would use a structure with
two degrees of freedom. Thus, an unnatural vibration characteristic would be determined since the input data
only consists of sdof systems. Modal averaging can overcome the problem: The averaged function preserves
the characteristic of an sdof structure.

The number of natural frequencies contributing to the target function M(O) can be chosen as necessary.
Theoretically, the apparent mass function in Eq. (3) contains a sum of infinite sdof structures. The higher the
number of degrees of freedom, the better the modal model approximates the original data. The risk associated
with too many degrees of freedom is that unnatural vibration modes are identified which probably do not
originate in the human body itself. This is not caused by the mode decoupling method itself, but by the
identification algorithm.

This method is useful for the identification of the main biodynamic characteristics, i.e. the global natural
frequencies. Therefore, it is appropriate to select a certain number n with regard to the measured transfer
function. The course of the curves mainly depends on the direction of excitation/direction of measurement.
For the vertical direction, it was observed that three sdof structures are usually sufficient to reproduce a given
apparent mass curve in a frequency range up to 30Hz. Generally speaking, the number of relevant resonances
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Fig. 5. apparent mass of sdof model A, apparent mass of sdof model B, mean apparent mass of both models,

modally averaged apparent mass of both models.
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can be better detected from the phase response than from the modulus (cf. Fig. 10). The third resonance is not
very clear in the modulus because of the high damping in the frequency range above 20Hz, but nevertheless
the phase shift is evident in Fig. 10. Under horizontal excitation, the response functions include one or two
main resonances, depending on the vibration intensity (cf. Hinz et al. [11]).

The identification algorithm is based on the minimization of error functions expressed in terms of apparent
mass errors. The objective function is defined asX

O

M identifiedðOÞ �MdataðOÞ
�� ��2 ¼ E. (7)

A common least-square optimization technique is utilized to minimize the error E using MATLAB [12]. The
minimization problem, expressed in Eq. (7), is solved by applying constraints to the target vector
[fr,Dr,mr

m,m0
m]. The constraints are simply inequalities, i.e. all parameters must be greater than zero. The

target vector contains all modal parameters which are needed to calculate the apparent mass according to the
model in Fig. 4. The vector has the length of 3n+1 where n denotes the total number of degrees of freedom. It
is evident that the lower bound constraints the parameters to be positive numbers.

To obtain the global minimum of the objective function, we implemented an iterative identification process
which varies the starting values of the modal parameters’ vector and compares the identified results with the
previous ones.
2.3. The relation between various transfer functions

Besides the driving-point mechanical impedance and the apparent mass, another biodynamic response
function, the seat-to-head transmissibility function, is commonly used. It is defined as the complex ratio of the
motion of the head to the motion at the man-seat interface as shown in Fig. 2:

HðOÞ ¼
QheadðOÞ

QðOÞ
¼

€QheadðOÞ
€QðOÞ

. (8)

Other transfer functions, such as the response of the acromion or of a vertebra to an excitation of the
buttocks, are rarely found in the literature.

Some mathematical models cover both the seat-to-head transfer function and the function describing the
interaction of the human body with respect to the seat. Various authors created structures where one mass
(degree of freedom) can be associated with the head. For example, ISO 5982 denotes m2 as the representation
of the head. Wu et al. [13] studied the relationships between biodynamic response functions and considered
several models [3–5] which were derived to represent the ‘‘to-the-body’’ response, such as impedance or
apparent mass. Expressions to describe the relation between apparent mass and seat-to-head transfer function
were proposed.

The following example aims to demonstrate that the modal description holds for the seat-to-head transfer
function as well. A model consisting of three degrees of freedom connecting masses, springs, and dampers in
series and a model with three parallel sdof structures (according to the German standard 45 676 [14]) are
shown in Fig. 6.

The stiffness and mass parameters of the in series model, which are given in Table 1, are derived from a
synthetic apparent mass curve. Even if the human body does not show a damping behavior which can be
described as proportional damping, this example employs a factor proportional to the stiffness matrix, for
clarity (C ¼ 0.005*K).

If the modal description method were applied to a non-classically damped system (i.e. a dynamic system
without proportional damping), a decoupling approximation is required. Several methods were developed to
find an estimation of a diagonalized damping matrix [15–17].

The apparent mass function of the 3 dof in series model (Fig. 6 left) can be calculated by solving the lower
line of Eq. (9) for f0. Double differentiation with respect to jO yields the simulated response at the base mass
depicted in Fig. 7.
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Table 1

Parameters of 3 dof in series model; parameters of 3 dof modal model; natural frequencies and damping ratios of both models (series and

modal)

Series model Modal model Both models

Parameter Value Parameter Value Parameter Value

m0 (kg) 10.37 m0
m (kg) 10.37 f1 (Hz) 5.9

m1 (kg) 12.56 m1
m (kg) 23.45 f2 (Hz) 13.1

m2 (kg) 16.6 m2
m (kg) 12.12 f3 (Hz) 33.5

m3 (kg) 9.56 m3
m (kg) 3.16 D1 (%) 9.3

k1 (N/m) 24105 k1
m (N/m) 32678 D2 (%) 20.6

k2 (N/m) 136080 k2
m (N/m) 82375 D3 (%) 52.6

k3 (N/m) 254700 k3
m (N/m) 139650

c1 (N s/m) 120.53 c1
m (N s/m) 163.39

c2 (N s/m) 680.4 c2
m (N s/m) 411.87

c3 (N s/m) 1273.5 c3
m (N s/m) 698.24
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The equation of motion for a base excited structure (in the present case f ¼ 0) can be expressed as

M M0

M0T M00

" #
€q

€q0

" #
þ

C C0

C0T C00

" #
_q

_q0

" #
þ

K K0

K0T K00

" #
q

q0

" #
¼

f

f0

� �
. (9)

All dynamic properties for the eigenvalue analysis are included in the system matrices M, C and K. The
eigenvalue problem reads as follows:

l2rMþ lrCþ K
� �

ur ¼ 0, (10)

where lr denotes the rth eigenvalue and ur the rth eigenvector. To solve the eigenvalue problem, the equation
of motion (9) can be transformed into a set of first-order differential equations:

_z ¼ Az (11)

with the system matrix A

A ¼
0 I

�M�1K �M�1C

� �
. (12)

Then, the solution of the eigenvalue problem yields the eigenvalues which are usually complex numbers, as
well as the right r and left 1 eigenvectors. In the following, the right eigenvectors are used and denoted as u:

ðA� lIÞr ¼ 0; ðAT
� lIÞl ¼ 0. (13)
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Fig. 8. Frequency response functions of the modal 3 dof model. _____ V1, V2, V3.
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Fig. 7. Apparent mass of both 3 dof models (Fig. 6).
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The natural frequencies or are the absolute values of the eigenvalues and damping ratios Dr are the ratio
of the real part of the eigenvalue to the respective natural frequency. The natural frequencies and damping
ratios can be found in Table 1. These parameters are used in the frequency response functions Vr(O) which
contribute to the apparent mass. Fig. 8 illustrates the response function of each sdof system.
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The generalized masses are computed using the modal matrix ~U ¼ ½u1 . . .ur . . .un� which contains all
eigenvectors

Mgen ¼ UTMU. (14)

Since the values of the eigenvectors define a ratio only, the modal matrix is usually scaled, e.g., the largest
displacement, or rotation entry in each vector is unity. A normalization which is based on mass participation
factors is applied to the modal matrix. Each eigenvector is normalized using each component of the diagonal
generalized mass matrix:

~ur ¼ ur

1

m
gen
r

uT
r MdiagðIÞ. (15)

It is obvious that the sum of each row of the normalized modal matrix equals 1:

~U ¼

1:2989 �0:3048 0:0059

0:3559 0:7743 �0:1302

0:1283 0:3234 0:5483

2
64

3
75. (16)

With the modified modal matrix ~U, the modal masses (in (kg)), sometimes called modal effective masses,
can then be calculated by analogy to Eq. (9):

Mm ¼ ~U
T
M ~U. (17)

The modal stiffness and the modal damping coefficients can now be computed as

km
r ¼ o2

r mm
r , (18)

cm
r ¼ 2mm

r orDr. (19)

All parameters of the modal model are listed in Table 1. The advantage of the normalization technique
based on the mass participation factors is that the modal quantities can be used in physical coordinates, and
not only in the modal domain. It may be taken into account that the base mass of the modal model is identical
to the in series model as the same excitation qs at the driving point is applied to both models.

With regard to the seat-to-head transmissibility, the uppermost mass m1 of the series model can be regarded
as the head, even if the dampers and springs do not correspond to physiological structures within the body. All
transfer functions from the base to the masses m1

m, m2
m and m3

m are plotted in Fig. 9.
The modal model makes the representation of a head a little more complicated. It is not possible to assign

the motion of the head to one particular sdof structure. But the modal model includes the seat-to-head transfer
function as well: Again, it is just based on the frequency response function of each system and the modal
matrix. The components of the participation factor scaled matrix correspond to the modal masses. The seat-
to-head transmissibility can be expressed as

H10ðOÞ

H20ðOÞ

H30ðOÞ

2
64

3
75 ¼ ~U

V 1ðOÞ

V 2ðOÞ

V 3ðOÞ

2
64

3
75 (20)

or can be written as an analogy to the apparent mass in Eq. (3)

Hq0ðOÞ ¼
X
r¼1

~UqrV rðOÞ. (21)

The above equations reveal that the modal matrix is required to express the seat-to-head transfer function in
terms of modal parameters. The method can be used if the eigenmodes are available from a finite element
analysis. Kitazaki and Griffin [18] determined the mode shapes from an experimental modal analysis on eight
individuals using a method proposed by Dobson [19].
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Fig. 9. Transfer functions of both 3 dof models (Fig. 6). _____ H10, H20, H30.

S. Rützel et al. / Journal of Sound and Vibration 298 (2006) 810–823 819
3. Results of the modally identified biodynamic response functions

To illustrate the abilities of the modal approach with respect to human vibration characteristics, the results
of the six individual TP of the 50th male percentile (m 50) are presented. The experimental apparent mass data
of Hinz et al. [20] was used.

Twenty-three males (body mass ranging from 58.2 to 106 kg, body height from 160.0 to 186.9 cm) and 22
females (51.5–84.1 kg, 154.0–175.0 cm) volunteered for the experiments. During vibration exposure, subjects
were sitting on an anatomically shaped hard wooden seat coated with a thin layer of felt. The angle of the seat
surface to the horizontal was 161, the backrest of a commercial car seat was mounted independently of the seat
surface at an angle of about 901 to the latter. The subjects sat in a relaxed and subjectively comfortable posture
with both hands placed on the thighs near the knee joints and leaning against the backrest. Their feet rested on
a support inclined 451 to the horizontal. The distance between this support and the seat was individually
adjusted.

Three exposure conditions of random vertical whole-body vibration (frequency range 1–35Hz, duration
130 s) were tested: E1—a nearly flat spectrum with 0.3m s�2 rms (ISO 2631-1, 1997 [1]), E2 and E3—exposures
with a spectrum measured under field conditions in a car with 0.7 and 1.4m s�2 rms, respectively.
Table 2

Whole-body vibration characteristics with respect to listed parameters

Parameter Symbol/name Specification

Gender M Male

Mass percentile 50 Body mass: 72.7–77.5 kg

mean body mass: 74.6 kg

Posture Automotive Position in a car

Direction of excitation Z Vertical

Intensity of excitation E1 Broad-band excitation signal with 0.3m s�2 rms

E2 Spectrum measured under field conditions in a car with 0.7m s�2 rms

E3 Spectrum measured under field conditions in a car with 1.4m s�2 rms
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Data of the 50th male percentile and interacting parameters are summarized in Table 2.
It is not surprising that individual parameters can have a significant influence on the course of the apparent

mass. Fig. 10 shows the modulus and the phase for six individuals (light dashed) for all three excitation
intensities.

Table 3 shows the modally identified parameters of six TP at the same excitation signal (E2). It is obvious
that the first peak occurs between 5.7 and 6.4Hz. The second resonance frequency is located in the range of
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Fig. 10. Apparent mass of m50 individuals, automotive posture, three excitation intensities: (a) E1, (b) E2 and (c) E3. modally

identified apparent mass, mean apparent mass, individuals.
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Table 3

Modal parameters of m50 individuals, automotive posture, excitation intensity E2

TP # f1 (Hz) f2 (Hz) f3 (Hz) D1 (%) D2 (%) D3 (%) m1
m (kg) m2

m (kg) m3
m (kg) m0

m (kg)

05 6.3 11.9 29.3 23 26 24 29.6 7.9 1.6 7.3

06 6.4 11.4 25.7 21 36 17 23.7 17.1 0.9 7.0

08 5.7 10.5 27.8 24 23 22 29.6 9.2 1.9 6.7

13 5.7 10.5 26.3 21 22 17 29.9 11.7 0.9 5.7

14 6.1 11.9 29.4 27 24 17 32.1 8.2 1.1 7.5

15 6.1 11.8 27.7 29 29 22 30.6 9.0 0.9 8.0

Mean x 6.0 11.3 27.7 24 27 20 29.2 10.5 1.2 7.0

Std. dev. s 0.30 0.66 1.52 3 5 3 2.89 3.50 0.41 0.78

COV x=s 4.9% 5.8% 5.5% 13.7% 19.6% 15.8% 9.9% 33.2% 34.0% 11.1%
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Fig. 10. (Continued)
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12–13Hz. Two TP (08 and 13) show some differences compared to the remaining subjects. Both peaks are
shifted towards lower frequencies.

It is obvious that the identified natural frequencies only vary within a range of approximately 5%
(coefficient of variation between 4.9% and 5.8%). The base mass and the first modal mass (contributing for
the most part to the first peak) are usually concordant with all identified data sets, showing differences of
roughly 10%. Significant differences between individuals are apparent in the second mass. The deviations of
the damping ratios are relatively small because the anthropometrics of the TP did not differ significantly.
However, the parameters describing the damping are ‘weaker’ than the resonant frequencies.

The mean apparent mass function, based on the modal identification of the individual curves, is compared
to the ‘simple’ mean apparent mass (heavy dashed) in Fig. 10. While the first resonance frequency agrees very
well in both averaging methods, the second main peak at 11.5Hz shows some discrepancy.

The same procedure was extended to all three excitation signals while both the mass percentile and the
posture were kept constant. Results of the modally identified and of the averaged apparent mass data sets are
shown in Fig. 11. The upper and the lower boundaries of 18 separate apparent mass curves (six for each
excitation intensity) are shown, since they underline the broad variety of individual data. Again, the second
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peak of the averaged data is ‘smeared out’, while the modally identified curve preserves the information about
the second main resonance.
4. Conclusions

The biodynamic response functions reported in the literature and the standards for the human body differ
considerably. Much effort has been spent in analyzing, averaging, and smoothing measured data. Numerous
mathematical models with different numbers of degrees of freedom and varying structures (configuration of
multiple mass–spring–damper systems in series, in parallel or mixed) have been proposed. Parameters of these
models were identified by fitting the model response to the measured input data. The quality of agreement
between several models and target function was investigated to find the ‘best structure’, i.e. the structure which
delivered the best fit. In some cases, special models were developed to deal with more than one response
function, e.g. the apparent mass and the seat-to-head transmissibility function.

In this paper, the modal approach was introduced, in which the model consists of a base mass and n sdof
structures. Comparison with a 3 dof in series model reveals that the modal model not only represents the
‘‘to-the-body’’ but also the ‘‘through-the-body’’ response characteristics, such as the seat-to-head response
function.

Applying the method to real experimental data demonstrated that modal parameters such as natural
frequencies, modal masses, and damping ratios can be identified from individual data sets. The modal
description is an appropriate means to characterize the responses to whole body vibrations and to study the
influence of different vibration conditions.

The problem of averaging different curves to achieve a mean function was addressed. The identified modal
parameters should be used as a basis for calculating mean response functions because the main vibration
characteristics will be preserved. It is not limited to the traditional method of comparing the height and the
frequency range of the peaks. The set of modal parameters contains all the relevant information to describing
the human vibration behavior and it can be used for statistical testing procedures.



ARTICLE IN PRESS
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Since the modal approach generates structures of the human body which are not restricted by an anatomical
context, it is applicable for the development of phenomenological models. The mathematical model can be
realized as a hardware design, the so-called hardware vibration dummy.

It has been general practice to compare computed response functions of simulation models, including finite
element models, with experimental data by plotting the relevant curves. Further research is required to
establish a ‘validation platform’ in terms of the basic dynamic properties, namely the modal parameters.
Complex software models of the human body can be broken down to straightforward mathematical models
using modal analysis tools. This method can be employed to render simulation and experimental data
comparable, as well as to support the validation process for software models.
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